
So�ware Development (cs2500)

Lecture 13: Arrays

M.R.C. van Dongen

November 1, 2010

Contents
1 Introduction 1

2 Arrays with Objects 1

3 Arrays and Iterators 3
3.1 Index-based Iteration . 4

3.2 Enhanced for Loop . 5

4 ForWednesday 5

1 Introduction
�is lecture partly corresponds to the last part of Chapter 4. �e main objectives are as follows.

• Study primitive and object arrays.

• Learn techniques for iterating over the members of an array.

2 Arrays with Objects
We’ve already studied the creation of arrays that contain primitive and object types. Today we continue

by studying object arrays in a bit more detail.

Basically, arrays are like trays with cups. Each cup contains a value of the type which was used to

create the array. �e number of cups is given by the array’s length attribute. Notice, that this attribute

violates encapsulation. Let array be an array variable. �e notation array[i] gives you the cup at

position i in array.

Cups behave just like variables. �e following two examples demonstrate two important cases. �e

�rst case is where a value is assigned to a cup, the second case is where a value is needed from a cup.

1

• ‘array[i] = 〈expr〉’ assigns the value of the expression 〈expr〉 to the i th cup. Basically, this

�lls the i th cup with the value of 〈expr〉.

• ‘System.out.println(array[i])’ prints what’s in the i th cup. �e point of this example is

that here we’re not using the cup at the le� hand side of an assignment, but in an expression where

a value is needed. If you use a variable where a value is expected then you get the current value of

the variable. With array subscripts this is similar: using array[i] results in the current value of

the i th cup in array.

It is recalled that the binary operator ‘==’ is for equality testing, so ‘〈lhs〉 == 〈rhs〉’ gives true if and

only the values of 〈lhs〉 and 〈rhs〉 are equal. Note that we’re talking about values, so ‘〈lhs〉 == 〈rhs〉’ is

also true if 〈lhs〉 and 〈rhs〉 are di�erent variables that have the same values. �e binary operator ‘!=’ is

for testing disequality: ‘〈lhs〉 == 〈rhs〉’ is equivalent to ‘!(〈lhs〉 != 〈rhs〉)’.

It is also recalled that when numeric arrays are created (using new) their cups are �lled with the value

0. �e following demonstrates the basic array usage.

int[] ints = new int[3]; // Magic constant.

// ints[0] == 0;
ints[1] = 1;
ints[2] = 2;

if (ints[0] != ints[1]) {
System.out.println(ints[0] + " != " + ints[1]);

}

ints[0] = ints[2];
if (ints[0] == ints[2]) {

System.out.println(ints[0] + " == " + ints[2]);
}

ints[1] = ints[2];
if (ints[0] == ints[1]) {

System.out.println(ints[0] + " == " + ints[1]);
}

Java

�is example prints three lines.
1

Object arrays with objects work just like primitive value arrays. �is time, however, the cups contain

object reference values which are given by (1) references to existing objects and (2) the special object

reference value null, which can be assigned to any object reference variable and which does not correspond

to any object. Initially, the cups are �lled with null.

1
If you don’t understand this, try and see if it makes sense if you leave out the array declaration and use a variable int0

instead of ints[0], a variable int1 instead of ints[1], and a variable int2 instead of ints[2]. Next assign 0 to int0, 1
to int1 and 2 to int2. Since (di�erent) cups in arrays just behave like (di�erent) variables, the example should now make sense.

2

�e following is an example with object arrays.

Dog[] dogs = new Dog[3]; // Magic constant.

// dogs[0] = null;
dogs[1] = new Dog("Zeus");
dogs[2] = new Dog("Bo");
if (dogs[0] != dogs[1]) {

System.out.println(dogs[0] + " != " + dogs[1]);
}

dogs[0] = dogs[2];
if (dogs[0] == dogs[2]) {

System.out.println(dogs[0] + " == " + dogs[2]);
}

dogs[1] = dogs[2];
if (dogs[0] == dogs[1]) {

System.out.println(dogs[0] + " == " + dogs[1]);
}

Java

�is example also prints three lines. If you don’t understand this, again try and see if the example

makes sense if you use variables instead of array subscript notation. Hint: Except for the kinds of values
that are used in this example, this example is identical to the previous example. For example, all values in
dogs are di�erent a�er the assignment to dogs[2] and the last 13 lines of the example are identical to
those of the previous example up to renaming.

3 Arrays and Iterators
�is section studies basic techniques for iterating over arrays. �ere are two techniques for iterating over

the members of an array.

Index-based iteration: �e �rst technique is the well-known idiom that uses an index variable to enu-

merate the possible indices of the array.

Collection-based notation: �is technique depends on a special recently introduced notation which

avoids the use of index variables. �e notation only works for arrays, collections, and Iterable
objects. (For the moment it su�ces to know that a collection is an object that supports storing

and retrieval of other objects. Examples are Lists, Sets, Queues, and so on. Iterable objects may

also be viewed as collections that store objects (but there are di�erences). A class is Iterable if it

implements a method called iterator() which returns an Iterator object which can be used

to iterate over the members of the Iterable object. Here iterating over the members is done in

a similar way as with the hasNext-next mechanism for Scanner objects which we studied in the

previous lecture. We shall study collections and Iterable classes in future lectures.)

3

3.1 Index-based Iteration
�e following uses the index-based notation to enumerate the members of the array from “le� to right”.

int index;
for (index = 0; index < array.length; index ++)
〈Use array[index]〉

Java

You can also use the test ‘index != array.length’ instead of ‘index < array.length’.

�e following demonstrates why the basic index-based iteration idiom is prone to certain kinds of

programming errors.

int Index;
for (Index = 0; Index < array.length; Index ++)
〈Use array[Index]〉

...

int lndex;
for (Index = 0; lndex < array.length; Index ++)
〈Use array[Index]〉 // Oops.

Don’t Try this at Home

�e main reason for this error is that the second loop is in the scope of the variable Index. Stated

di�erently, the scope of the variable Index is too larger: it should have been been “con�ned” to the for
loop.

It is recalled that the scope of a local variable is restricted to the innermost block that encloses the

variable’s declaration. �e following example demonstrates this point: the variable index cannot be used

outside the block.

{
int index;
for (index = 0; index < array.length; index ++)
〈Use array[index]〉

}

Java

Adding extra block just to restrict the scope of a variable isn’t great because you get deeper block-

nesting levels, which makes it di�cult to see what’s going on. �e following idiom also doesn’t expose the

index variable outside the for construct. �is is the preferred idiom if you don’t need the index variable

outside the for loop.

for (int index = 0; index < array.length; index ++)
〈Use array[index]〉

Java

Despite it being an improvement to the basic index-based iteration idiom, the index-based notation

with local variables still isn’t (always) perfect. �e following demonstrates why.

4

int lndex;
for (int Index = 0; Index < array.length; Index ++)
〈Use array[lndex]〉

Don’t Try this at Home

Another common error occurring in combination with array iteration are o�-by-one errors. �ese

errors are caused by errors in the termination condition as a result of which the iteration omits an index

or treats an index too many. �e following is an example.

for (int index = 0; index <= array.length; index ++)
〈Use array[index]〉

Don’t Try this at Home

�e last kind of errors which may occur in combination with the index-based iterator notation is

caused by over�ow. �e following is a prototypical example. �e idiom works for most arrays but it fails

if array.length == Integer.MAX_SIZE: the condition index <= array.length cannot fail.

int[] array = new int[Integer.MAX_LENGTH];
for (int index = 1; index <= array.length; index ++)
〈Use array[index - 1]〉

Don’t Try this at Home

3.2 Enhanced for Loop
If the iteration is over an array, over a so-called collection or an Iterable object then there is an alternative

to the index-based idiom. �e alternative notation is called the enhanced for loop notation. �e following

demonstrates how you use it.

int[] things = {1,2,3};
for (int thing : things)
〈Use thing〉

Java

Arguably this idiom it is easier to read and understand. More importantly, it completely avoids the

use of the index variable, thereby avoiding possible o�-by-one errors and unintentional changes to the

value of the index variable inside the loop. In addition it avoids o�-by-one errors and over�ow errors.

Clearly, this is the preferred idiom for object arrays and le�-to-right iteration.

4 ForWednesday
Study the notes, study Pages 80–87 of the book, and carry out the exercises on Pages 92 and 93 of the

Book.

5

	Introduction
	Arrays with Objects
	Arrays and Iterators
	Index-based Iteration
	Enhanced for Loop

	For Wednesday

